开普勒三大定律,是由德国天文学家开普勒提出的关于行星运动的三大定律。第一第二定律是开普勒有幸从天文学家第谷20年观测火星的资料,从而经过6年的计算总结出来的,后又经过10年的计算得到第三定律,开普勒三大定律对后世影响深远。
开普勒三大定律1、椭圆定律所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。
2、面积定律行星和太阳的连线在相等的时间间隔内扫过相等的面积。
3、调和定律所有行星绕太阳一周的恒星时间(
)的平方与它们轨道长半轴(ai)的立方成比例,即。一、数学推导开普勒定律是关于行星环绕太阳的运动,而牛顿定律更广义的是关于几个粒子因万有引力相互吸引而产生的运动。在只有两个粒子,其中一个粒子超轻于另外一个粒子,这些特别状况下,轻的粒子会环绕重的粒子移动,就好似行星根据开普勒定律环绕太阳的移动。然而牛顿定律还容许其它解答,行星轨道可以呈抛物线运动或双曲线运动。这是开普勒定律无法预测到的。在一个粒子并不超轻于另外一个粒子的状况下,依照广义二体问题的解答,每一个粒子环绕它们的共同质心移动。这也是开普勒定律无法预测到的。
二、适用范围开普勒第二定律
开普勒定律适用于宇宙中一切绕心的天体运动。在宏观低速天体运动领域具有普遍意义。对于高速的天体运动,开普勒定律提供了其回归低速状态的方程。也就是说,开普勒第二定律及其引出的推论,不仅适用绕太阳运转的所有行星,也适用于以行星为中心的卫星,还适用于单颗行星或卫星沿椭圆轨道运行的情况。仅适用于宏观低速运动的天体。提出的时候并没有给出严格的证明,但是为后来许多定律的证明奠定了基础。
开普勒第三定律
开普勒定律是一个普适定律,适用于一切二体问题。开普勒定律不仅适用于太阳系,他对具有中心天体的引力系统(如行星-卫星系统)和双星系统都成立。围绕同一个中心天体运动的几个天体,它们轨道半径三次方与周期的平方的比值(R^3/T^2)都相等,为(GM/4π^2),为中心天体质量。这个比值是一个与行星无关的常量,只与中心体质量有关,那么M相同是这个比值相同
三、影响开普勒定律在科学思想上表现出无比勇敢的创造精神。远在哥白尼创立日心宇宙体系之前,许多学者对于天动地静的观念就提出过不同见解。但对天体遵循完美的均匀圆周运动这一观念,从未有人敢怀疑。开普勒却毅然否定了它。这是个非常大胆的创见。哥白尼知道几个圆合并起来就可以产生椭圆,但他从来没有用椭圆来描述过天体的轨道。正如开普勒所说,“哥白尼没有觉察到他伸手可得的财富”。